Dietary protein source determines the degree of hypertension and renal disease in the Dahl salt-sensitive rat.

نویسندگان

  • David L Mattson
  • Carla J Meister
  • Michelle L Marcelle
چکیده

Previous studies demonstrated that a whole-grain diet attenuated sodium-dependent hypertension and renal disease in Dahl salt-sensitive rats from the colony at the Medical College of Wisconsin (Dahl SS/Mcw rats) compared with rats maintained on a purified AIN-76A diet. The present experiments determined which component(s) of the grain diet prevented renal and cardiovascular disease. Male SS/Mcw rats were maintained on isocaloric diets identical to AIN-76A, except the source of protein (wheat gluten for casein), carbohydrate (wheat flour for sucrose), or fat (soybean oil for corn oil) was substituted in separate diets. Rats were maintained on the different diets from weaning and studied after 3 weeks on a high-salt (4.0% NaCl) diet. Substitution of the carbohydrate in the diet did not affect body weight, arterial pressure, or renal disease. Replacement of casein with wheat gluten significantly reduced body weight (258+/-7 versus 353+/-3 grams), mean arterial pressure (133+/-2 versus 153+/-2 mm Hg), and albumin excretion (9+/-1 versus 50+/-7 mg/d) to levels of rats fed the whole-grain diet (n=7 to 16/group). Replacement of the fat in the diet increased arterial pressure without affecting body weight or albumin excretion. The results of the present study indicate that dietary components other than sodium play an important role in the development of hypertension and renal disease in the Dahl SS/Mcw rat.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and/or genetically controlled alterations of the renal microsomal cytochrome P450 epoxygenase induce hypertension in rats fed a high salt diet.

Excess dietary salt induces a cytochrome P450 arachidonic acid epoxygenase isoform in rat kidneys (Capdevila, J. H., S. Wei, J. Yang, A. Karara, H. R. Jacobson, J. R. Falck, F. P. Guengerich, and R. N. Dubois. 1992. J. Biol. Chem. 267:21720-21726). Treatment of rats on a high salt diet with the epoxygenase inhibitor, clotrimazole, produces significant increases in mean arterial blood pressure (...

متن کامل

Dietary NaCl regulates renal aminopeptidase N: relevance to hypertension in the Dahl rat.

Aminopeptidase N (APN) is an abundant metallohydrolase in the brush border of kidney proximal tubule cells that degrades angiotensin III (Ang III) to angiotensin IV (Ang IV) and, along with dipeptidylaminopeptidase, degrades Ang IV. We examined the impact of a high-salt diet on renal APN activity and transcript abundance in the Sprague-Dawley and Dahl salt-sensitive (SS/Jr) rat strains. APN tra...

متن کامل

Gαi2-protein-mediated signal transduction: central nervous system molecular mechanism countering the development of sodium-dependent hypertension.

Excess dietary salt intake is an established cause of hypertension. At present, our understanding of the neuropathophysiology of salt-sensitive hypertension is limited by a lack of identification of the central nervous system mechanisms that modulate sympathetic outflow and blood pressure in response to dietary salt intake. We hypothesized that impairment of brain Gαi2-protein-gated signal tran...

متن کامل

Altered renal alpha 2-adrenergic receptor regulation in genetically hypertensive rats.

Renal alpha 1 and alpha 2-adrenergic receptors were quantified in Dahl salt-sensitive and salt-resistant rats, in Okamoto-Aoki spontaneously hypertensive rats (SHR), in Wistar Kyoto "normotensive" (WKY), and in Charles River rats made hypertensive by the Grollman ligature technique and by DOC-NaCl administration after unilateral nephrectomy. The effect of high dietary NaCl on renal alpha recept...

متن کامل

Increased kidney xanthine oxidoreductase activity in salt-induced experimental hypertension.

Clinical and experimental studies have established an association between high sodium intake and arterial hypertension. The renal mechanisms resulting in impaired sodium excretion in hypertension-prone subjects are not clear. In hypertension-prone rats, high blood pressure results in increased renal mass and hemodynamic changes, both of which may alter renal oxygen distribution. Xanthine oxidor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hypertension

دوره 45 4  شماره 

صفحات  -

تاریخ انتشار 2005